Windows Security Components

The components that built the Windows security environment

Overview

- Access Control
- Principals
- Security Descriptor
- Security Identifier
- Discretionary Access Control List
- System Access Control List
- Object Creation Rules
- Privileges
- Auditing

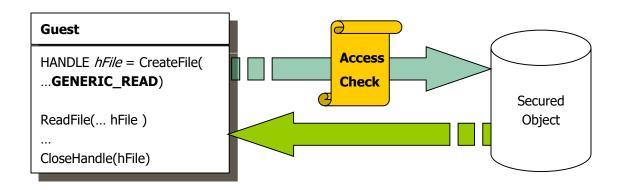
<u>www.winitor.com</u> - May 2006

Access Control Matrix

- Map domains with objects
 - Every process is assigned one domain
- Elements
 - Column : Subject/principal/group
 - Row : Object/resource
 - Cell : Right/permission
- Focus
 - CL : Capability List all rights, one subject (User focused)
 - ACL : Access Control List all subjects, one object (Object focused)

<u>www.winitor.com</u> - May 2006

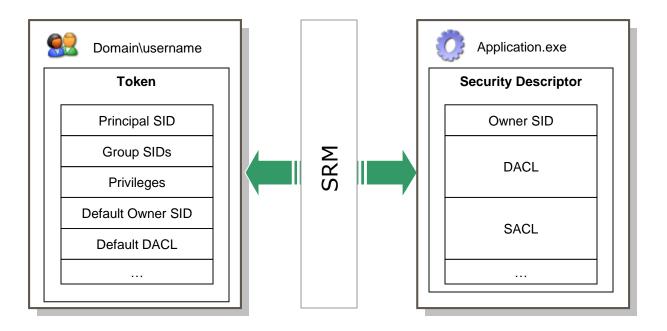
Access Control Matrix


domains

pjects

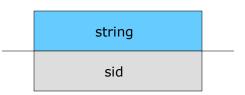
	Sid1	Sid2	Sid3	Sid4	
File	Read, write	Read	Execute, delete	Write	
Directory	Read	Read	Read	Read	
Mutex	Write	Write, execute			Synchronize
Process					

Access Control


- Strategy is a three variables equation
 - User token = Security context of a process/thread (Who)
 - 2. Access Mask = Access desired (What, intention)
 - 3. Security Descriptor = List of rules associated an object
- On success, a handle stores access permissions
 - Security < tradeoff > performance
- New handle must be used for new permission
 - Open/Close/Open

<u>www.winitor.com</u> - May 2006

Accessing a protected Object


- Chek of identity and group membership Who
- Check of permissions What
- Check of privileges

www.winitor.com - May 2006

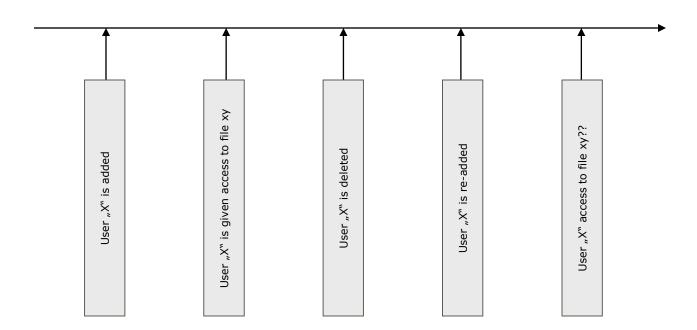
Principal

- A Principal is an entity that can prove his identity
 - User, group, machine, domain
- A principal must have an existing account
- A principal is uniquely identified in time and space
 - DomainA\Jim
 - DomainB\Jim
 - Computer\Jim
- Principals names are language independent
 - Administrator
 - Administrateur
 - Spanish, Chineese, ...
- Principals have two names
 - Human-readable unique within restricted scope
 - Machine-readable unique in space and time

Security Identifier

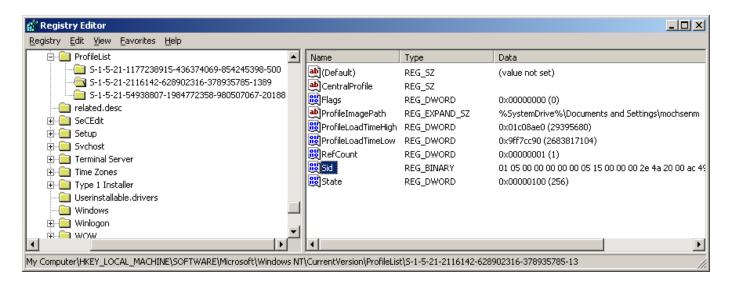
Motivation

- Localization and built-in name
- User renaming and movements

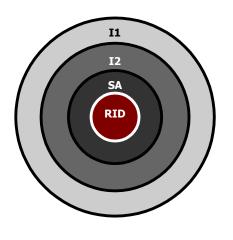


Solution

- Accounts are internally represented by an alphanumeric value
 - Fully and uniquely (space and time) identification of a principal
 - When a principal logs on, the SID is retrieved from the SAM
- Renaming an account as no effect


Security Identifier

Life-time of a Principal


Security Identifier - Discovery

- Groups and Users names are easy to collect remotely
 - Connect -> discover -> attack...
 - User2sid, Sid2user
 - Whoami
 - Getsid

Security Identifier - Format

• S - R - I1 - I2 - SA - SA - SA - RID

I1: Authority (Space Uniqueness)

48-bit Identifier value, Agent that issued the SID

Authority	Value
World	1
	2
	3
NT	5

I2: Tag

Tag	Value
BUILTIN	21
UNIQUE	32

SA: Sub-Authority (Time Uniqueness)

Machine unique 96 bit value, indicates trustee relationship to the issuing Authority

RID: Relative Identifier (Non-uniqueness)

Users	RID
\Administrator	500 (0x000001F4L)
\Guest	501 (0x000001F5L)
	,

Groups	RID
\Administrators	512 (0x00000200L)
\Users	513 (0x00000201L)
\Guests	514 (0x00000202L)

New Principal	RID
Domain\Name	1000++

Security Identifier - Translation Service

LookupAccountName(

```
SystemName, // in
AccountName, // in
Sid, // out
DomainName,...); // in
```

LookupAccountSid(

```
SystemName, // in
Sid, // in
Name, // out
DomainName,...); // in
```


Security Descriptor

- Collection of security information associated with an object describing its security policy
- Second part of the objects security equation
- Contains any, all or none of
 - Object's owner SID
 - Discretionary Access-Control List (DACL) the owner of an object specifies the access control policy for that object at his/her discretion (hence the name DACL)
 - System Access-Control List (SACL)
- Access control policy is specified as an access control list

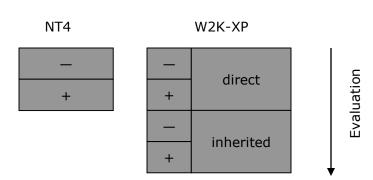
www.winitor.com - May 2006

Security Descriptor - Anatomy

- Revision Number
 - Version of SRM that creates the SD
- Control Flags
 - Inheritance, protection (isolation)
- Owner SID
 - Object's owner
- Group SID
 - Posix standard requires that an object can be owned by a group (not used)
- DACL
 - Who has what access to an object
- SACL
 - Which operation by which user should be audited
- SD comes in two flavours
 - Absolute fixed-length structure which contains pointers to other structures (system use)
 - Relative Variable-length structure which contains offsets (persistency registry..., wire transmission)

13

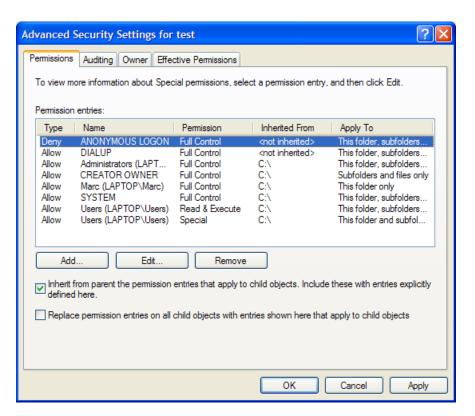
<u>www.winitor.com</u> - May 2006


Discretionary Access Control List

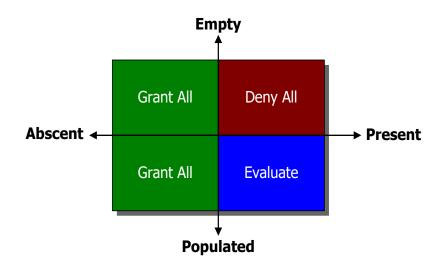
- "Who can do what" list
- List of zero or more Access Control Entries (ACEs)
- An ACE has four fields of information
 - Type (Denied "-" or Allowed "+")
 - SID (Principal/Trustee)
 - Permission Mask
 - Inheritance flags (Directory/File)

Туре	SID	Permission	Inheritance
+ (allow)	Everyone	R	Propagate ACEs
+	Friends	W	Isolate object
- (deny)	John	RD	

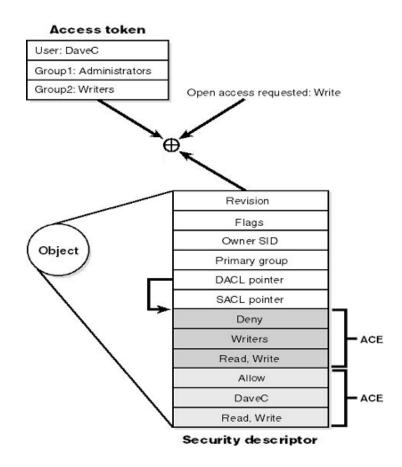
Discretionary Access Control List


- Top to bottom evaluation looking for requested access, and stops immediately when:
 - Any requested access has been (directly/indirectly) explicitly denied
 - All requested access have been (directly/indirectly) explicitly granted
- Ordering
 - negative ACE (deny)
 - positive ACE (allow)
- Inheritable ACEs
 - Direct precedes indirect (inherited)

15


Discretionary Access Control List

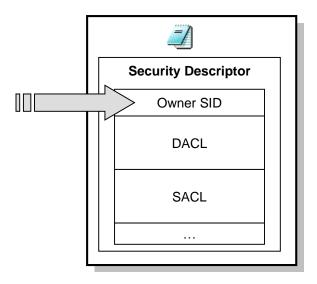
Working with the DACL and SACL editor


DACL Evaluation

- Empty DACL denies access to everyone
- Null DACL grants full control access to everyone
- No DACL grants full control access to everyone
- Populated DACL evaluates the access control

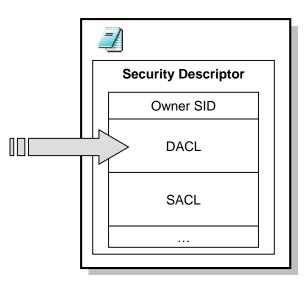
Access Check in Action

- Equation of three inputs...
 - 1. Access Token
 - 2. Access Request (Intention)
 - 3. Object's Security Descriptor

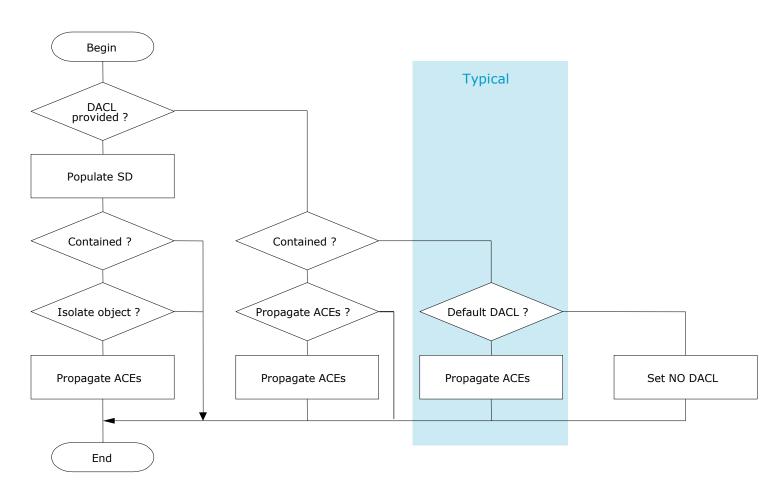

System Access Control List

- Generated audits are located in the Events Log
- List of "who should be audited for what specific action"
- A SACL in not discretionary
 - ONLY Administrator, or user with SeSecurityPrivilege permission, can access the SACL
- SACL ordering
 - Positive ACE = Audit on success
 - Negative ACE = Audit on failure
 - An entry can be both positive and negative
- Order is not important

www.winitor.com - May 2006


Object Creation – Owner Rules

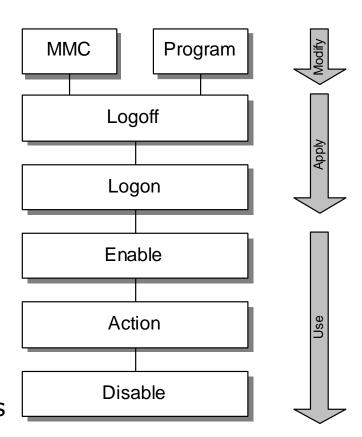
• ...


Object Creation – DACL Rules

- The way a DACL is computed for a new object obeys complex rules
 - A DACL has been provided
 - A DACL has not been provided
 - The object is contained in another one
 - The container is marked to propagate its ACEs
 - The object is marked as to be isolated

21

Object Creation – DACL Rules

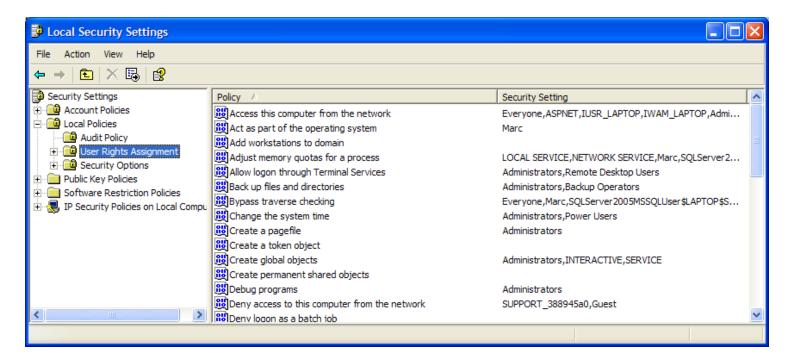

Privileges

- User's right to perform specific tasks that usually affect the entire computer rather particular objects
 - Backup (read/write)
 - Shut-down the machine
 - Debug a program (attach to a process...and kill it!)
 - Change the system time
 - Be part of the TCB (logon creation)
 - Bypass Traverse checking (security <> performance)
- User's right to access system resources (global scope)
 - Load a driver
 - Increase quotas
- Privileges are injected in token ONLY at authentication time
- Privileges are cached in token
 - Granting a new privilege has absolutely no effect on existing session
- Privileges are granted relative to the local machine

www.winitor.com - May 2006

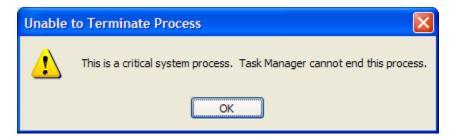
Privileges Management

- Two-tier mechanism
 - Privilege must be present
 - Privileges must be enabled
- Privileges cannot be added
 - Token must be refreshed
 - Logoff/on for interactive session
 - Shut down, start service session
- Privileges can only be switched on/off
 - OpenTreadToken(..)
 - AdjustTokenPrivileges(..)
 - ...perform action
 - AdjustTokenPrivileges(..)
- Many privileges usage are not audited
- Fixed numbers/types
- Applications cannot introduce new privileges


24

Privileges Names

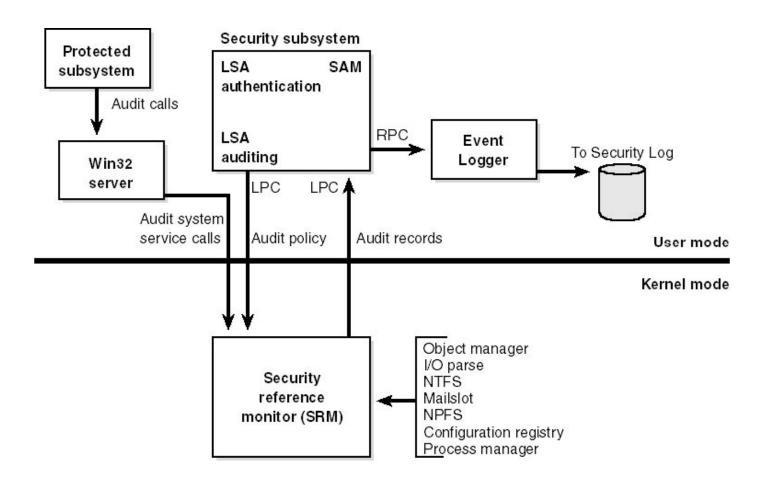
Name	Description
SeBackupPrivilege	Back up files an directories
SeChangeNotifyPrivilege	Bypass traverse checking
SeCreateDebugPrivilege	Debug programs
SeIncreaseQuotaPrivilege	Increase quotas
SeInteractiveLogonRight	Logon locally to an NT system
SeLoadDriverPrivilege	Load and unload Device drivers
SeMachineAccountPrivilege	Add workstations to a domain
SeNetworkLogonRight	Access the system from a network
SeRemoteShutdownPrivilege	Force the shutdown of a remote system
SeRestorePrivilege	Restore files and directories
SeSecurityPrivilege	Manage auditing and security log
SeShutdownPrivilege	Shut down the system
SeSystemProfilePrivilege	Profile system performance
SeSystemtimePrivilege	Change the system time
SeTakeOwnershipPrivilege	Take ownership of securable objects
SeTcbPrivilege	Act as part of the operating system
SeUndockPrivilege	Remove the computer from the docking station


Privileges Management

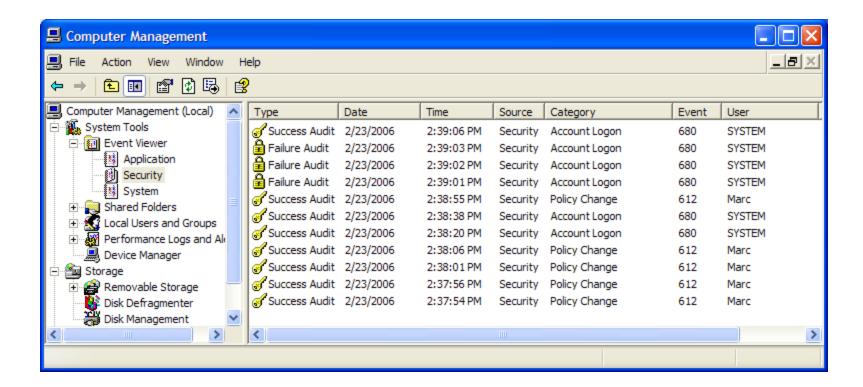
- Privileges are assigned by administrators to individuals or groups
- User Rights and Privileges are synonymous since both are related to principal(s) behind a process

Privileges Usage

- System protects the administrator to hurt himself
 - Taskmgr cannot kill somes services and system process
 - Administrator "Access denied"!?
 - When run by an administrator, taskmgr's token includes SeDebugPrivilege, but it is disabled


- Modify the token associated with taskmgr
 - PVIEW
 - KILL

Auditing


- Definition
 - The "other side" of security (protection/monitoring)
 - Monitor security-related activity (success, failures)
 - Services are a primary security exposure
- Types
 - User Logons
 - Objects tracking/creation/accesses
 - file, directory, process, services, registry, printer, mutex....
 - Memory consumption
 - Network problem
 - Policy changes
 - Use of privileges (backup, system time....)
- Two-steps process
 - Set up the audit policy (kinds of events to be audited)
 - Configure actual objects to which the auditing will be applied

www.winitor.com - May 2006

Flow of auditing records

Viewing Auditing Events

Summary

- A secured object has always an owner
- A process always runs on behalf of a principal
- A principal is always assigned to a token
- A principal is uniquelly identified with a SID
- A Security Descriptor is always assigned to an protected object
- Access check occurs only when opening an object
- Privilege is related to actions not to specific objects
- Audit is an essential part of the security

www.winitor.com - May 2006

Links

- Programming NT Security (Addison-Wesley, Keith Brown)
- Windows NT Security (R&D Books Miller Freeman, N.Okuntseff)
- Windows NT Security Guide (Addison Wesley, Stephen A. Sutton)
- Microsoft Windows Internals fourth Edition, (Microsoft Press, D.Solomon, M.Russinovich)
- Secure Networking with Windows 2000 and Trust Services (Addison Wesley, Jalal Feghhi and Jalil Feghhi)
- Microsoft Windows 2000 Security Handbook (Que, Jeff Schmidt)
- Modern Operating Systems Second Edition (Prentice Hall, Tanenbaum)

www.winitor.com - May 2006